Mutagenesis Mapping of the Protein-Protein Interaction Underlying FusB-Type Fusidic Acid Resistance
نویسندگان
چکیده
FusB-type proteins represent the predominant mechanism of resistance to fusidic acid in staphylococci and act by binding to and modulating the function of the drug target (elongation factor G [EF-G]). To gain further insight into this antibiotic resistance mechanism, we sought to identify residues important for the interaction of FusB with EF-G and thereby delineate the binding interface within the FusB-EF-G complex. Replacement with alanine of any one of four conserved residues within the C-terminal domain of FusB (F156, K184, Y187, and F208) abrogated the ability of the protein to confer resistance to fusidic acid; the purified mutant proteins also lost the ability to bind S. aureus EF-G in vitro. E. coli EF-G, which is not ordinarily able to bind FusB-type proteins, was rendered competent for binding to FusB following deletion of a 3-residue tract (529SNP531) from domain IV of the protein. This study has identified key regions of both FusB and EF-G that are important for the interaction between the proteins, findings which corroborate our previous in silico prediction for the architecture of the complex formed between the resistance protein and the drug target (G. Cox, G. S. Thompson, H. T. Jenkins, F. Peske, A. Savelsbergh, M. V. Rodnina, W. Wintermeyer, S. W. Homans, T. A. Edwards, and A. J. O'Neill, Proc. Natl. Acad. Sci. U. S. A. 109:2102-2107, 2012).
منابع مشابه
A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance
Antibiotic resistance in clinically important bacteria can be mediated by proteins that physically associate with the drug target and act to protect it from the inhibitory effects of an antibiotic. We present here the first detailed structural characterization of such a target protection mechanism mediated through a protein-protein interaction, revealing the architecture of the complex formed b...
متن کاملRibosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid.
Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of ...
متن کاملGenetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus.
Resistance to fusidic acid in Staphylococcus aureus is caused by mutation of the elongation factor G (EF-G) drug target (FusA class) or by expression of a protein that protects the drug target (FusB and FusC classes). Recently, two novel genetic classes of small-colony variants (SCVs) were identified among fusidic acid-resistant mutants selected in vitro (FusA-SCV and FusE classes). We analyzed...
متن کاملStructure and function of FusB: an elongation factor G-binding fusidic acid resistance protein active in ribosomal translocation and recycling
Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis during elongation and ribosome recycling. The plasmid pUB101-encoded protein FusB causes FA resistance in clinical isolates of Staphylococcus aureus through an interaction with EF-G. Here, we report 1.6 and 2.3 Å crystal structures of FusB. We show that FusB is a two-domai...
متن کاملHigh prevalence of resistance to fusidic acid in clinical isolates of Staphylococcus epidermidis.
OBJECTIVES To determine the prevalence and mechanisms of resistance to fusidic acid in clinical isolates of Staphylococcus epidermidis. METHODS MICs of fusidic acid were determined for S. epidermidis isolates collected from the Leeds General Infirmary and from around Europe. Fusidic acid-resistant isolates were probed for the presence of the horizontally acquired resistance determinants fusB ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 57 شماره
صفحات -
تاریخ انتشار 2013